skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adam, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the pursuit of developing high‐temperature alloys with improved properties for meeting the performance requirements of next‐generation energy and aerospace demands, integrated computational materials engineering has played a crucial role. Herein, a machine learning approach is presented, capable of predicting the temperature‐dependent yield strengths of superalloys utilizing a bilinear log model. Importantly, the model introduces the parameter break temperature,Tbreak, which serves as an upper boundary for operating conditions, ensuring acceptable mechanical performance. In contrast to conventional black‐box approaches, our model is based on the underlying fundamental physics built directly into the model. A technique of global optimization, one allowing the concurrent optimization of model parameters over the low‐ and high‐temperature regimes, is presented. The results presented extend previous work on high‐entropy alloys (HEAs) and offer further support for the bilinear log model and its applicability for modeling the temperature‐dependent strength behavior of superalloys as well as HEAs. 
    more » « less
  2. Measurements are presented of the cross-section for the central exclusive production ofJ/\psi\to\mu^+\mu^- J / ψ μ + μ and\psi(2S)\to\mu^+\mu^- ψ ( 2 S ) μ + μ processes in proton-proton collisions at\sqrt{s} = 13 \ \mathrm{TeV} s = 13 T e V with 2016–2018 data. They are performed by requiring both muons to be in the LHCb acceptance (with pseudorapidity2<\eta_{\mu^±} < 4.5 2 < η μ ± < 4.5 ) and mesons in the rapidity range2.0 < y < 4.5 2.0 < y < 4.5 . The integrated cross-section results are\sigma_{J/\psi\to\mu^+\mu^-}(2.0 σ J / ψ μ + μ ( 2.0 < y J / ψ < 4.5 , 2.0 < η μ ± < 4.5 ) = 400 ± 2 ± 5 ± 12 p b , σ ψ ( 2 S ) μ + μ ( 2.0 < y ψ ( 2 S ) < 4.5 , 2.0 < η μ ± < 4.5 ) = 9.40 ± 0.15 ± 0.13 ± 0.27 p b , where the uncertainties are statistical, systematic and due to the luminosity determination. In addition, a measurement of the ratio of\psi(2S) ψ ( 2 S ) andJ/\psi J / ψ cross-sections, at an average photon-proton centre-of-mass energy of1\ \mathrm{TeV} 1 T e V , is performed, giving$ = 0.1763 ± 0.0029 ± 0.0008 ± 0.0039,$$ where the first uncertainty is statistical, the second systematic and the third due to the knowledge of the involved branching fractions. For the first time, the dependence of theJ/\psi$ J / ψ and\psi(2S) ψ ( 2 S ) cross-sections on the total transverse momentum transfer is determined inpp p p collisions and is found consistent with the behaviour observed in electron-proton collisions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026